

• Towards a Generic Foundry Model Glass, Silicon and InP

• (Generic) Circuit approach Building Blocks, Design rules, Design kits

• Opportunities

Jeppix, ePIXfab, OpSIS ...

(vertical integrated fab)

Since 1990 worldwide several B\$ invested in development of photonic integration technologies

Market share of PICs is still small for payback investments

- Almost all research was strongly application driven
- No coordination in technology development
- Therefore, almost as many technologies as applications
- No knowledge and cost sharing advantage
- For most companies entry costs too high
- Move to a few generic technologies that support a broad range of functionalities
- > Apply the methodology of CMOS to photonics

Photonic Devices, PoliMi, A. Melloni

- Up to now almost all research has been Application driven
- Therefore almost as many technologies as applications (almost everything is reinvented)
- For most of them: market too small for payback investments
- Huge fragmentation, unsustainable fragments
- (in electronic) Huge market served by a small set of integration technologies
- (in photonic) Small market served by a huge set of integration technologies

A fully optimized technology for a succesfull application

Too many degree of freedom, Too many materials, Too many technologies, Too many component types, too many packaging types **No standards**

Photonic Devices, PoliMi, A. Melloni

... that support a broad range of functionalities

Limit the number of possibilities (technologies, devices, materials, dimensions, ...)

Move to a Generic Foundry Model means

- Convergence of technologies
- Decouple design and technology (IP)
- Reduce cost (entry, development, qualification, multi-projects...)
- Use standard Building Blocks
- Set up libraries, design kits, circuit design tools
- Generic packaging

Fabless companies, new market, design houses, high quality foundries, reduced time to market, no custom design...

... that support a broad range of functionalities

Photonic Devices, PoliMi, A. Melloni

Move from *application specific* technology development to *generic* technologies that apply to a broad range of functionalities

Apply the methodology of microelectronics to photonics

Knowledge and cost sharing	Vertical Integrated Model	Custom Foundry Model	Generic Foundry Model
Cleanroom fab	NO	YES	YES
Integration process	NO	NO	YES
Design Kit	NO	NO	YES
Component Library	NO	NO	YES
Packaging	NO	NO	YES
Qualification and testing	NO	NO	YES

The generic foundry model (in Europe)

Eco-system for InP foundry model

JePPIX: broker InP and TriPleX

TU/e Technische Universiteit Eindhoven University of Technology

Value chain for photonic ASICs prototyping

Photonic Devices, PoliMi, A. Melloni

Multi-Project Wafer (MPW) runs

Generic foundries offer standardized and general-purpose fabrication technologies to external users. The ecosystem of fabless player can focus on new circuital solutions rather than technological issues.

Learning from integrated electronics

- Access to a cutting-edge photonic technology
- Sharing wafer: sharing fab costs
- Simple and cheap way of prototyping
- Fabless business model

Increasing complexity

Increase of complexity:

- At the ASPICs level
- At the mask/reticle level

Photonic ICs : variety of applications

> 350 ASPICs fabricated in MPW runs

All-optical regenerator for constant envelope WDM signals

WDM to TDM Trans-Multiplexer

Pulse serialiser

Brillouin strain sensor readout

Fiber sensor readout

Fiber Bragg Grating readout

Fiber Bragg Grating readout

Medical and bio-imaging

Pulse shaper for bio-imaging

Integrated tunable laser for optical coherence tomography

THz Optical to RF converter

Variety of lasers

Widely tunable ring laser

Variable repetition rate pulse laser

Filtered-feedback multi-wavelength laser

tunable laser with integrated MZI modulator

QPSK receiver

Optical switching

4x4 space and wavelength selective switch

Fast optical switch matrix

Fiber to the home

WDM receiver

WDM transmitter

POLITECNICO DI MILANO

Photonic Devices, PoliMi, A. Melloni

Major Generic foundries

ar

MICRO FOUNDRY

http://www.jeppix.eu

Photonic Devices, PoliMi, A. Melloni

GLOBALFOUNDRIES Capacity: ~7M Wafers/Yr*

East Fishkill, New York	Malta, New York	Burlington, Vermont	Dresden, Germany	Singapore	
TECHNOLOGY					
90nm–22nm	28nm, ≤ 14nm	350nm–90nm	45nm-22nm	180nm–40nm	
CAPACITY IN WAFERS/MONTH					
14,000 (300mm)	Up to 60,000 (300mm)	40,000 (200mm)	60,000 (300mm)	68,000 (300mm) 93,000 (200mm)	

Photonic Devices, PoliMi, A. Melloni

The (potential) market forecast

COMPARISON OF FULLY INTEGRATED SILICON PHOTONICS MPW PLATFORM (WITH PASSIVES AND ACTIVES) AVAILABLE IN R&D FOUNDRIES

	IME/OpSIS	IMEC/ePIXfab	CEA-LETI/ ePIXfab
Passives	Si passives with 60nm, 130 nm and 220 nm etch depths	Si passives with 70nm, 130 nm and 220 nm etch depths, extra poly-Si layer	Si passives with 70nm, 130 nm and 220 nm etch depths
Photodetector	Ge vertical pin	Ge vertical pin	Ge lateral pin
Modulator	Si MZ, Si ring	Si MZ, Si ring	Si MZ
Heater ¹	doped Si	doped Si	
Couplers	Vertical and edge	Vertical	Vertical
Wavelength Supported ²	1310 and 1550 nm	1310 and 1550 nm	1550 nm
CAD Tools	Mentor Graphics/ Lumerical	Mentor Graphics/ IPKISS/Phoenix	Mentor Graphics/ Phoenix
Packaging	PLC Connections/ Chiral	Tyndall National Institute	Tyndall National Institute
Pricing ³	\$1800 - 2200 USD/mm ²	\$1330 - 1550 EUR/mm ²	\$1400 - 2500 EUR/mm ²

ROADMAP • FREE ARTICLE

Roadmap on silicon photonics

David Thomson^{1,10,11}, Aaron Zilkie², John E Bowers³, Tin Komljenovic³, Graham T Reed¹, Laurent Vivien⁴, Delphine Marris-Morini⁴, Eric Cassan⁴, Léopold Virot^{5,6}, Jean-Marc Fédéli^{5,6}

+ Show full author list

Published 24 June 2016 • © 2016 IOP Publishing Ltd

Journal of Optics, Volume 18, Number 7

http://www.jeppix.eu

IPSR ROADMAP

https://aimphotonics.academy/roadmap/ipsr-roadmap

POLITECNICO DI MILANO

Photonic Devices, PoliMi, A. Melloni

```
DWDM on CWDM - Aspic
```


Logical process flow

Photonic Devices, PoliMi, A. Melloni

Analysis, design, study of large and complete optical circuits

• The key point is the 'model', which describes the behavior of the circuits' building blocks

• The **BBs** are described by models that collect all the microscopic details and to be used at macroscopic level

Electromagnetic approach (physical modeling)

Circuit approach (high abstraction level)

$$\nabla \times \mathbf{E} = -j\omega\mathbf{B}$$
$$\nabla \times \mathbf{H} = j\omega\mathbf{D} + \mathbf{J}$$
$$\mathbf{B} = \mu\mathbf{H}$$
$$\nabla \cdot \mathbf{D} = \rho$$

- flexible (no modeling required)
- needs and gives physical parameters
- large time and memory requirements
- suitable for small elements

- requires a modeling
- non information on geometry & materials
- access only to input/output port waves
- very fast, suitable for large circuits

The wave equation: $\nabla^2 \mathbf{E_t} + \nabla (\mathbf{E_t} \cdot \nabla \ln \varepsilon) + (\omega^2 \varepsilon \mu_0 - \beta^2) \mathbf{E_t} = \mathbf{0}$ BPM, FDTD, FEM, EME, MoL, MM, IE,

The model / BB / S matrix

- higher abstraction level
- model (preprocessing)
- single/multi mode
- measure/datasheets/EM results

Modelling of photonic Building Blocks

Photonic Devices, PoliMi, A. Melloni

The model of a straight waveguide

- α , β $f(\lambda, temperature, I, V, E and H field, statistics, aging ... solar wind, radioactivity !)$
- *TE / TM: birefringence, multimode, mode coupling,...*
- Input/output modal mismatch
- Parasitic interactions, backscatter
- Nonlinearities

• /

• $e^{-\alpha L - j\beta L}$

The Building Blocks

Photonic Devices, PoliMi, A. Melloni

The Composite Building Blocks

Some physical Building Blocks

PO2DECNICO DI MILANO

Photonic Devices, PoliMi, A. Melloni

The (SOI) Building Blocks Library

Photonic Devices, PoliMi, A. Melloni

Photonic integration

4 basic elements 3 basic elements PWD ERM SOA Waveguide **PWD** ERM Phase SO/ Amplitude Polarisation

Electronic integration

Integration of building blocks in a single chip

Photonic Devices, PoliMi, A. Melloni

All kinds of passive devices ...

switches and modulators ...

All kinds of lasers ...

Photonic Devices, PoliMi, A. Melloni

BB comes from a cooperation: Foundry + Designer + BB builder

Effective index n_{eff} is the most important parameter

Effective index n_{eff} is useless !

Photonic Devices, PoliMi, A. Melloni

Circuit = Σ Building Blocks

Tunable delay line 0÷8 bit @ 10...100 Gbit/s OOK, 10 Gbit/s

Functionality —> Topology

Photonic Devices, PoliMi, A. Melloni

Fill the gap between components and systems

Photonic Devices, PoliMi, A. Melloni

CITCUIT SIMULATOR

Product

 ASPIC is a software for the analysis and design of integrated and hybrid optical circuits without restrictions in dimensions and complexity. Its model-based approach does not need descriptions at physical level, permitting to concentrate on the circuit functionality.

 ASPIC is complementary to classical electromagnetic simulators and is many orders of magnitude faster and less memory consuming.

 ASPIC is a powerful environment that allows to analyze complete optical circuits, calculate the spectral behavior, synthesize devices, realize virtual experiments, carry out 'what if' and 'worst case' analysis, compare measurements and simulations for parameter extraction, estimate the yield, study the impact of technological tolerances and much more...

 ASPIC can be used for "educational", "proof of concept", "research" and "virtual prototyping" purposes and will be your precious, invaluable and powerful tool to develop optical devices and circuits

Login		
Login		
Password		
Login		
Register to de	ownload demo version	

Photonic Devices, PoliMi, A. Melloni

Analysis of the circuit

Each element of the circuit has N ports where the complex amplitudes of input and output waves are specified.

Each element is described by a Scattering matrix

A. Melloni

Matrix description of the circuit

Structure of a circuit simulator (ASPIC)

Photonic Devices, PoliMi, A. Melloni

n_{eff} Etching depth Layers thickness Material homogeneity Stress & Strain Linewidth

> Wafer ME2768 Etch depth 60 min

$$K = \sin^2(\kappa L) = \sin^2(\kappa_0 e^{-g/d}L)$$

Photonic Devices, PoliMi, A. Melloni

1.92

1.90

1.88

Etch depth [um]

1.94

1.96

POHDECNICO DI MILANO

Tolerance impact on filters (δn_{eff} , δk)

Tolerance on coupling coefficients and effective index

Tunable delay line

A matrix of rings...

Robust optical delay lines with topological protection M. Hafezi, NATURE PHYSICS, VOL. 7, NOVEMBER 2011

1656 Building Blocks, 3760 ports, 18 nested variables

Photonic Devices, PoliMi, A. Melloni

Libraries for ASPIC[™] simulator

1600 BBs; 100 lambda points \rightarrow 1 min

KUmitide Aspjc Fle Edit View Project Smudden Tools Help □ @ @ @ C 3) & Be @ → ▼ ▲ @ [], ≂ ③ ● % Ⅲ &	
	Direct export to mask layout
0.0000	

